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Abstract
Having developed a hybrid genetic algorithm, we have studied low-lying
excited states of the ±J Heisenberg model in two (d = 2) and three (d = 3)

dimensions. We have found evidence of the occurrence of the Parisi states in
d = 3 but not in d = 2. That is, in Ld lattices, there exist metastable states
with a finite excitation energy of �E ∼ O(J ) for L → ∞, and energy barriers
�W between the ground state and those metastable states are �W ∼ O(JLθ)

with θ > 0 in d = 3 but with θ < 0 in d = 2. This finding favours the
replica-symmetry-breaking or the trivial–nontrivial scenario of the SG phase
over the droplet scenario.

PACS numbers: 75.50.Lk, 02.70.Lq, 05.50.+q

Recently, the Heisenberg spin-glass (HSG) model in three dimensions (d = 3) has generated
great interest, because evidence of the occurrence of SG phase transition at a finite, non-zero
temperature (TC �= 0) has been given in numerical studies contrary to a common belief that no
phase transition occurs without anisotropy [1, 2]. Kawamura and his coworkers took note of
chiralities of the spins and showed that a chiral glass (CG) phase transition occurs at TCG �= 0,
but the spin glass phase is still absent [3–5]. On the other hand, Matsubara et al examined
the stiffness at T = 0 and T �= 0 of the ±J Heisenberg model on the L3 lattice with open
boundaries and suggested that the SG phase transition will occur at TSG ∼ 0.19 J [6, 7]. They
also obtained almost the same transition temperature by using different numerical methods,
i.e. an ageing effect [8] and the divergence of the SG susceptibility [9]. Recently, Nakamura
and Endoh showed that, using a non-equilibrium relaxation method, the CG phase transition
and the SG phase transition occur at the same temperature of TSG = TCG ∼ 0.20 J [10]. Quite
recently, Lee and Young presented the same conclusion using a finite size analysis of the
correlation length of the spins and chiralities [11].

An important question is, then, the nature of the SG phase of the HSG model. In the
Ising SG (ISG) models in d = 3, two scenarios have been extensively discussed: the replica-
symmetry-breaking (RSB) scenario of Parisi [12] and the droplet scenario of Fisher and Huse
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[13]. An important difference between the RSB and the droplet scenarios concerns the nature
of large-scale excitations. In the RSB scenario, there are many excitations, which involve
turning over a finite fraction of the spins and which cost only a finite energy �E ∼ O(J )

even in the thermodynamic limit. The energy barriers between each of those excitations and
the ground state, and also between those excitations, are infinite in the thermodynamic limit.
Hereafter, we call those excitations Parisi states. By contrast, in the droplet scenario, the
lowest excitation which has linear spatial extent l typically costs an energy �E ∼ J lθ with
θ > 0. Hence, in the thermodynamic limit, excitations which flip a finite fraction of the spins
cost an infinite energy. In addition, the surface of the excitations in the droplet scenario is
fractal with a fractal dimension ds < d, whereas in the RSB scenario the surface is space
filling, i.e. ds = d. Recently, a trivial–nontrivial (TNT) scenario has been presented on the
basis of numerical results [14, 15], that is, the surface of large-scale excitations appears to be
fractal and only a finite amount of energy is needed to excite them (i.e. the Parisi states). Our
primary question is whether the Parisi states (the RSB or the TNT scenario) exist or not in the
HSG model.

In this letter, having developed a hybrid genetic algorithm (HGA) for systems with the
XY and Heisenberg spins, we have studied the ground state and low-lying excited states of the
±J Heisenberg model on finite lattices of Ld (d = 2 and 3). We have found the Parisi states
in d = 3 but not in d = 2. This finding favours the RSB or the TNT scenario over the droplet
scenario. We should note, however, that our results also imply the occurrence of small scale
droplet-like excitations around the Parisi states. We hope our finding will stimulate studies of
the low temperature phase of the HSG model.

We start with the ±J Heisenberg model on the d dimensional lattice of Ld (≡N) with
periodic boundary conditions. The Hamiltonian is described by

H = −
∑
〈ij〉

JijSiSj (1)

where Si is the Heisenberg spin of |Si | = 1, and 〈ij 〉 runs over all nearest-neighbour pairs.
The exchange interaction Jij takes on either +J or −J with the same probability of 1/2.

First we consider the ground state. The search for the ground state of the HSG is a very
difficult problem, because many metastable states exist in the system. Usually, the ground state
of the HSG model is obtained by using a spin quench (SQ) method with many different initial
spin configurations [3, 16]. However, the number Ni of initial spin configurations which is
needed for obtaining the ground state increases rapidly as the size of the lattice increases. Here
we use a HGA which is analogous to the one used in the Ising SG model [17]. Starting with
a population Np of random spin configurations (parents) {Cl}, new configurations (offspring)
are generated by recombination of different parents Cl and Cm(l �= m), where we use a
single-point crossover. Then, after some fraction r of the spins are refreshed (mutation), the
SQ method is applied to optimize the offspring. The population Np is updated in such a way
that three-fourths of the parents with higher energy are exchanged for the offspring which
are selected in order of the lower energy. This procedure is repeated many times (generation
number Ng). In the Heisenberg SG, we should pay special attention to optimize the interface
energy in the recombination of Cl and Cm when one generates the offspring. This problem
can be resolved by applying a uniform rotation to all the spins of one of the parents. Having
used this algorithm, we have been able to obtain the ground state of the HSG model on larger
lattices. The HGA also works well in the XY SG models. Details of the HGA will be reported
elsewhere.

Once the ground state G with the spin configuration
{
SG

i

}
and the energy EG is determined,

one can search for excited states A with the spin configuration
{
SA

i

}
and the energy EA.
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Figure 1. Distributions of excited states (dots) in the (�S, �E) plane for typical samples with
(a) L = 6 and (b) L = 10 in d = 3 obtained by using the SQ method with Ni ∼ 2 × 104 (L = 6)

and 2 × 106 (L = 10). © indicates the lowest excited state for �S > 0.4 obtained by using the
HGA, and × denotes the domain wall states between the ground state and the lowest excited state.
G indicates the position of the ground state.

To distinguish each excited state, we consider the excitation energy �E and the distance �S

from the ground state:

�E = EA − EG (2)

�S = S(A,G) (3)
where

S(A,B) =
√√√√ 1

N2

∑
i,j

(
SA

i SA
j − SB

i SB
j

)2
. (4)

Note that, since the model has a rotational symmetry, we use a set of pair-spin correlations
{SiSj } for describing the spin structure. Note also that, if

{
SA

i

}
is independent of

{
SG

i

}
,�S ∼√

1
N2

∑
ij

((
SA

i SA
j

)2
+

(
SG

i SG
j

)2) →
√

2
4π

∫
cos(θ)2 d� = √

2/3 ∼ 0.82 (≡�S∞) for
L → ∞.

We may use two different methods for searching the excited states: (i) the usual SQ
method and (ii) the HGA. Both methods have their own merit. In the former, we can get
various excited states. However, we have to start with many different initial spin configurations
to get low-lying ones, e.g., Ni ∼ 106 for L = 10 in d = 3. On the other hand, the latter is
appropriate for searching the lowest one in a given range of �S.3 We can start with a smaller
number of the parents, e.g., Np ∼ 100 for L = 10 in d = 3. In figures 1(a) and (b), we
present distributions of the excited states of typical individual samples in d = 3 obtained in
the SQ method, together with the lowest excited state for �S > 0.4 in the HGA. In fact, using
these two methods we can get the same lowest excited state. Usual excitation energies �E

increase with �S and also with L. A remarkable point is that �E of low-lying excited states
are much smaller than those usual excitation energies. In particular, we often find low-lying
excited states with finite �S which have a very small excitation energy (�E 
 J ) (see
figure 1(b)). Note that some of the low-lying excited states, including the lowest excited
state seen above, are metastable states, because their energies no longer reduce when the SQ

3 We can get the lowest excited state in any range of �S, if we choose the offspring in that range.
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algorithm is applied further4. Another remarkable point is that, near the ground state, there
are many excited states whose energy increases rapidly as �S increases. The same is true for
excited states near the lowest excited state. The former point implies the presence of the Parisi
states. Here we discuss this problem considering an energy barrier between the ground state
and those low-lying excited states on the basis of a domain wall scenario. The latter point
implies the occurrence of droplet-like excitations.This point will be discussed in a separate
paper.

Suppose that, in addition to the ground state G with EG, some low-lying metastable state
A is given. The domain wall energy �W between G and A may be estimated by the following
procedure. (i) We divide the Ld lattice into two parts H1 and H2, which are composed of
[(L+1)/2] and [L/2] layers, respectively, where each layer has Ld−1 lattice sites and [x] means
the largest integer which does not exceed x. (ii) Fill H1 with the spins of G and H2 with the
spins of A, and apply a uniform rotation to all the spins on H2 to minimize the interface energy.
(iii) For each part of H1 and H2, fix all the spins on the middle layer. Under this restriction, the
SQ method is applied to get the spin configuration W which gives the minimum energy EW of
the Ld lattice. (iv) We consider W a domain wall state when S(W,G), S(W,A) > S(A,G)/4
is satisfied, and define the domain wall energy �W = EW −EG, where S(W,G) and G(W,A)

are the distances between the states W and G, and between the states W and A, respectively.
Note that the restriction for the state W is given to rule out the possibility that it comes close
to either G or A. The number of possible divisions of the Ld lattice into H1 and H2 is d × L

and the chirality freedom of 2 exists [3, 4]. So we repeat this procedure 2dL times. In
figures 1(a) and (b), we have added �W of these domain wall states. It is interesting to see
that �W are much higher than �E.

Now we consider the domain wall energies between the ground state and the lowest
metastable state in the range of �S > 0.4 (∼�S∞/2) for different samples. We denote the
excitation energy of this metastable state as �E0. Our attention is focussed on the lowest
domain wall energy, i.e. �Wmin (≡ min(�W)), for each of those samples. The calculation
has been performed in d = 2 and d = 3 by using the HGA. The linear sizes of the lattice
are L = 10–24 in d = 2 and L = 6–11 in d = 3, and the numbers of the samples
are Ns = 1024 in both d = 2 and d = 3 except for the largest lattices (Ns = 512 for
L = 24 (d = 2), and Ns = 256 for L = 11 (d = 3)). The following numbers of Np and
Ng are chosen with a common mutation ratio r = 0.4. In d = 2, Np = 16, 32, 64, 128, 256
for L = 10, 12, 16, 20, 24, respectively, and Ng = 5 for L � 16 and Ng = 16, 32 for
L = 20, 24, respectively. In d = 3, Np = 16, 32, 64, 128, 256, 512 for L = 6, 7, 8, 9, 10, 11,
respectively, and Ng = 5 for L � 8 and Ng = 8, 16, 32 for L = 9, 10, 11, respectively.
We calculate average values 〈�E0〉 and 〈�Wmin〉 over different samples and show them in
figures 2 and 3 for d = 2 and d = 3, respectively, as functions of L. In d = 2, in fact,
〈�E0〉 and 〈�Wmin〉 decrease with increasing L. These results clearly reveal the absence of
the SG phase. By contrast, in d = 3, 〈�E0〉 decreases slightly, and 〈�Wmin〉 increases with
L. We could fit data for larger L as 〈�Wmin〉 ∝ JLθ with θ = 0.53 ± 0.08. These results
strongly suggest the presence of the Parisi states. That is, in the thermodynamic limit, there
are metastable states which have a finite excitation energy �E0, probably �E0 
 J , and
which are separated from the ground state with an infinite energy barrier. The exponent θ is

4 Here, we applied the SQ algorithm for M = 1000 and M = 2000 times for L = 6 and L = 10, respectively. When
we applied the algorithm for several times as large as those numbers of M, almost all excited states near the ground
state disappear. Also all low-lying excited states, except for several whose energy is locally minimized, disappear. It
should be noted that, nevertheless, the distribution of those excited states is important, because the low temperature
property of the model will be governed by them.
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Figure 2. Average values of the lowest excitation energy 〈�E0〉 and the lowest domain wall energy
〈�Wmin〉 in d = 2 as functions of the linear lattice size L.
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Figure 3. Average values of the lowest excitation energy 〈�E0〉 and the lowest domain wall energy
〈�Wmin〉 in d = 3 as functions of the linear lattice size L.

the measure of the domain wall height. It is interesting to find that the value of θ ∼ 0.53 is
compatible with the stiffness exponent of θ = 0.4–0.8 estimated recently [6, 7].

In summary, we have studied low-lying excited states of the ±J Heisenberg model in two
(d = 2) and three (d = 3) dimensions having developed a hybrid genetic algorithm. We have
found the Parisi states in d = 3. We suggest, hence, that the SG phase really exists in the HSG
model in d = 3. Our result favours the RSB or the TNT scenario over the droplet scenario.
The next question is, then, whether the TNT scenario holds or not in the Heisenberg model. We
are currently examining this problem calculating a link overlap ql [14, 15]. Another question
is whether droplet-like excitations occur or not around the Parisi states in the thermodynamic
limit. That is, localized excitations which have linear spatial extent l (
L) and which cost an
energy of �E ∼ J lθ with θ > 0. If so, the SG phase of this HSG model may be characterized
by a mixed scenario of the RSB and the droplet analogous to the one that was speculated in
the Ising SG model [18]. This problem will be discussed in a future paper.

The authors would like to thank S Endoh and Dr T Nakamura for their valuable discussions.
This work was financed by a Grant-in-Aid for Scientific Research from Ministry of Education,
Science and Culture.
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